Coupon metadata for all coupons used in campaigns advertised to households participating in the Customer Journey study.

coupons

Format

A data frame with 116,204 rows and 3 variables

  • coupon_upc: Uniquely identifies each coupon (unique to household and campaign)

  • product_id: Uniquely identifies each product

  • campaign_id: Uniquely identifies each campaign

Source

84.51°, Customer Journey study, http://www.8451.com/area51/

Value

coupons

a tibble

Examples

# \donttest{
# full data set
coupons
#> # A tibble: 116,204 × 3
#>    coupon_upc  product_id campaign_id
#>    <chr>       <chr>      <chr>      
#>  1 10000085207 9676830    26         
#>  2 10000085207 9676943    26         
#>  3 10000085207 9676944    26         
#>  4 10000085207 9676947    26         
#>  5 10000085207 9677008    26         
#>  6 10000085207 9677052    26         
#>  7 10000085207 9677385    26         
#>  8 10000085207 9677479    26         
#>  9 10000085207 9677791    26         
#> 10 10000085207 9677878    26         
#> # ℹ 116,194 more rows

# Join product metadata to coupon dataset
require("dplyr")
coupons %>%
  left_join(products, "product_id")
#> # A tibble: 116,204 × 9
#>    coupon_upc  product_id campaign_id manufacturer_id department brand   
#>    <chr>       <chr>      <chr>       <chr>           <chr>      <fct>   
#>  1 10000085207 9676830    26          1722            GROCERY    National
#>  2 10000085207 9676943    26          317             GROCERY    National
#>  3 10000085207 9676944    26          317             GROCERY    National
#>  4 10000085207 9676947    26          1722            GROCERY    National
#>  5 10000085207 9677008    26          1722            GROCERY    National
#>  6 10000085207 9677052    26          317             GROCERY    National
#>  7 10000085207 9677385    26          317             GROCERY    National
#>  8 10000085207 9677479    26          317             GROCERY    National
#>  9 10000085207 9677791    26          317             GROCERY    National
#> 10 10000085207 9677878    26          317             GROCERY    National
#> # ℹ 116,194 more rows
#> # ℹ 3 more variables: product_category <chr>, product_type <chr>,
#> #   package_size <chr>
# }